The Ionospheric Scintillation Effects on the BeiDou Signal Receiver

نویسندگان

  • Zhijun He
  • Hongbo Zhao
  • Wenquan Feng
چکیده

Irregularities in the Earth's ionosphere can make the amplitude and phase of radio signals fluctuate rapidly, which is known as ionospheric scintillation. Severe ionospheric scintillation could affect the performance of the Global Navigation Satellite System (GNSS). Currently, the Multiple Phase Screen (MPS) technique is widely used in solving problems caused by weak and strong scintillations. Considering that Southern China is mainly located in the area where moderate and intense scintillation occur frequently, this paper built a model based on the MPS technique and discussed the scintillation impacts on China's BeiDou navigation system. By using the BeiDou B1I signal, this paper analyzed the scintillation effects on the receiver, which includes the acquisition and tracking process. For acquisition process, this paper focused on the correlation peak and acquisition probability. For the tracking process, this paper focused on the carrier tracking loop and the code tracking loop. Simulation results show that under high scintillation intensity, the phase fluctuation could be -1.13 ± 0.087 rad to 1.40 ± 0.087 rad and the relative amplitude fluctuation could be -10 dB to 8 dB. As the scintillation intensity increased, the average correlation peak would decrease more than 8%, which could thus degrade acquisition performance. On the other hand, when the signal-to-noise ratio (SNR) is comparatively lower, the influence of strong scintillation on the phase locked loop (PLL) is much higher than that of weak scintillation. As the scintillation becomes more intense, PLL variance could consequently results in an error of more than 2.02 cm in carrier-phase based ranging. In addition, the delay locked loop (DLL) simulation results indicated that the pseudo-range error caused by strong scintillation could be more than 4 m and the consequent impact on positioning accuracy could be more than 6 m.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of GPS Performance in a Scintillation Environment at Ascension Island

Post-sunset disturbances in the equatorial ionosphere routinely cause rapid phase and amplitude fluctuations (i.e., scintillation) of radio waves propagating through the disturbed regions. The intensity of scintillations is positively correlated with the solar cycle and the associated signal fades will often exceed 20 dB at L-band frequencies during solar maximum. The effect of such an environm...

متن کامل

Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement

  The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...

متن کامل

Development and use of a GPS ionospheric scintillation monitor

Besides their intended use in radionavigation, global positioning system (GPS) satellite signals provide convenient radio beacons for ionospheric studies. Among other propagation phenomena, the ionosphere affects GPS signal propagation through amplitude scintillations that develop after radio waves propagate through ionospheric electron density irregularities. This paper outlines the design, te...

متن کامل

On the Mutual Coherence Function for Transionospheric Waves and its Utility for Characterizing Ionospheric Irregularities with a GNSS Scintillation Monitor

When interpreting GNSS observations of ionospheric scintillation, it is instructive to distinguish between the separate goals of characterizing the GNSS signal fluctuations and characterizing the disturbed ionospheric medium that produces the scintillations. The statistics of GNSS signal fluctuations are of primary interest for GNSS tracking loop analysis and design studies intended to quantify...

متن کامل

Gps Ionospheric Scintillation Measurements Using a Beam Steering Antenna

The ionosphere can affect GPS receivers by degrading the signal strength, in some cases causing loss of carrier lock, and by degrading the accuracy of differential corrections. As we enter the solar maximum years, these effects will become more severe, causing frequent GPS outages in the polar and equatorial regions and over the entire North American landmass when magnetic storms occur. These i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016